An efficient and robust numerical algorithm for estimating parameters in Turing systems
We present a new algorithm for estimating parameters in reaction-diffusion systems that display pattern formation via the mechanism of diffusion-driven instability. A Modified Discrete Optimal Control Algorithm (MDOCA) is illustrated with the Schnakenberg and Gierer-Meinhardt reaction-diffusion syst...
Main Authors: | , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
2010
|
_version_ | 1826267763659767808 |
---|---|
author | Garvie, MR Maini, P Trenchea, C |
author_facet | Garvie, MR Maini, P Trenchea, C |
author_sort | Garvie, MR |
collection | OXFORD |
description | We present a new algorithm for estimating parameters in reaction-diffusion systems that display pattern formation via the mechanism of diffusion-driven instability. A Modified Discrete Optimal Control Algorithm (MDOCA) is illustrated with the Schnakenberg and Gierer-Meinhardt reaction-diffusion systems using PDE constrained optimization techniques. The MDOCA algorithm is a modification of a standard variable step gradient algorithm that yields a huge saving in computational cost. The results of numerical experiments demonstrate that the algorithm accurately estimated key parameters associated with stationary target functions generated from the models themselves. Furthermore, the robustness of the algorithm was verified by performing experiments with target functions perturbed with various levels of additive noise. The MDOCA algorithm could have important applications in the mathematical modeling of realistic Turing systems when experimental data are available. © 2010. |
first_indexed | 2024-03-06T20:59:11Z |
format | Journal article |
id | oxford-uuid:3a4c2e68-84a9-474c-a64c-e577f0d2dd19 |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-06T20:59:11Z |
publishDate | 2010 |
record_format | dspace |
spelling | oxford-uuid:3a4c2e68-84a9-474c-a64c-e577f0d2dd192022-03-26T14:00:46ZAn efficient and robust numerical algorithm for estimating parameters in Turing systemsJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:3a4c2e68-84a9-474c-a64c-e577f0d2dd19EnglishSymplectic Elements at Oxford2010Garvie, MRMaini, PTrenchea, CWe present a new algorithm for estimating parameters in reaction-diffusion systems that display pattern formation via the mechanism of diffusion-driven instability. A Modified Discrete Optimal Control Algorithm (MDOCA) is illustrated with the Schnakenberg and Gierer-Meinhardt reaction-diffusion systems using PDE constrained optimization techniques. The MDOCA algorithm is a modification of a standard variable step gradient algorithm that yields a huge saving in computational cost. The results of numerical experiments demonstrate that the algorithm accurately estimated key parameters associated with stationary target functions generated from the models themselves. Furthermore, the robustness of the algorithm was verified by performing experiments with target functions perturbed with various levels of additive noise. The MDOCA algorithm could have important applications in the mathematical modeling of realistic Turing systems when experimental data are available. © 2010. |
spellingShingle | Garvie, MR Maini, P Trenchea, C An efficient and robust numerical algorithm for estimating parameters in Turing systems |
title | An efficient and robust numerical algorithm for estimating parameters in Turing systems |
title_full | An efficient and robust numerical algorithm for estimating parameters in Turing systems |
title_fullStr | An efficient and robust numerical algorithm for estimating parameters in Turing systems |
title_full_unstemmed | An efficient and robust numerical algorithm for estimating parameters in Turing systems |
title_short | An efficient and robust numerical algorithm for estimating parameters in Turing systems |
title_sort | efficient and robust numerical algorithm for estimating parameters in turing systems |
work_keys_str_mv | AT garviemr anefficientandrobustnumericalalgorithmforestimatingparametersinturingsystems AT mainip anefficientandrobustnumericalalgorithmforestimatingparametersinturingsystems AT trencheac anefficientandrobustnumericalalgorithmforestimatingparametersinturingsystems AT garviemr efficientandrobustnumericalalgorithmforestimatingparametersinturingsystems AT mainip efficientandrobustnumericalalgorithmforestimatingparametersinturingsystems AT trencheac efficientandrobustnumericalalgorithmforestimatingparametersinturingsystems |