Search for electron neutrino anomalies with the MicroBooNE detector

<p>The Micro Booster Neutrino Experiment (MicroBooNE) is a Liquid Argon Time Projection Chamber (LArTPC) located in the Booster Neutrino Beam at Fermi National Accelerator Laboratory. The experiment was devised to investigate a series of observed anomalies concerning short-baseline neutrino os...

詳細記述

書誌詳細
第一著者: Van De Pontseele, W
その他の著者: Guenette, R
フォーマット: 学位論文
言語:English
出版事項: 2020
主題:
その他の書誌記述
要約:<p>The Micro Booster Neutrino Experiment (MicroBooNE) is a Liquid Argon Time Projection Chamber (LArTPC) located in the Booster Neutrino Beam at Fermi National Accelerator Laboratory. The experiment was devised to investigate a series of observed anomalies concerning short-baseline neutrino oscillation physics. The LArTPC technology enables the experiment to study neutrino-argon scattering with unprecedented detail.</p> <p>This thesis presents a cosmic-ray characterisation and rate measurement. The understanding of cosmic activity in the detector - MicroBooNE's dominant background - is then used to develop cosmic rejection tools. A flavour-agnostic neutrino selection is constructed, which forms the cornerstone of this and further analyses. Inclusive muon and electron charged-current neutrino interaction selections with unprecedented purity and efficiency are presented. </p> <p>The first fully-automated characterisation of electron neutrinos in a muon neutrino beam with the LArTPC detector technology is performed. The Booster Neutrino Beam has an energy peaking around 1GeV and an intrinsic electron content of approximately 0.5%. The analysis investigates electrons produced in charged-current electron neutrino interactions. The kinematics of the electrons are measured along with comparisons to simulation. Most of the systematic uncertainties are constrained using a data-driven sample of charged-current muon neutrino events. The measurement of electron neutrinos originating from the Booster Neutrino Beam is a crucial component towards understanding the nature of the observed excess of low-energy electromagnetic-like events at its predecessor, MiniBooNE.</p>