Free curves on varieties
In this thesis we study various ways in which every two general points on a variety can be connected by curves of a fixed genus, thus mimicking the notion of a rationally connected variety but for arbitrary genus. We assume the existence of a covering family of curves which dominates the product of...
Hlavní autor: | Gounelas, F |
---|---|
Další autoři: | Flynn, EV |
Médium: | Diplomová práce |
Jazyk: | English |
Vydáno: |
2012
|
Témata: |
Podobné jednotky
-
Birational geometry, rational curves, and arithmetic /
Autor: Bogomolov, Fedor, 1946-, editor, a další
Vydáno: (c201) -
Étale homotopy sections of algebraic varieties
Autor: Haydon, J
Vydáno: (2014) -
Optimal Ate Pairing on Elliptic Curves with Embedding Degree $9,15$ and $27$
Autor: Emmanuel Fouotsa, a další
Vydáno: (2020-04-01) -
Arithmetic and Geometry Around Hypergeometric Functions [electronic resource]: Lecture Notes of a CIMPA Summer School held at Galatasaray University, Istanbul, 2005/
Autor: Summer School on Arithmetic and Geometry around Hypergeometric Functions (2005 : Istanbul, Turkey), a další
Vydáno: (2007) -
Universal moduli of sheaves over curves and moduli of flags of varieties
via Geometric Invariant Theory
Autor: Cooper, GE
Vydáno: (2024)