Black-box policy search with probabilistic programs
In this work we show how to represent policies as programs: that is, as stochastic simulators with tunable parameters. To learn the parameters of such policies we develop connections between black box variational inference and existing policy search approaches. We then explain how such learning can...
المؤلفون الرئيسيون: | Van De Meent, J, Paige, B, Tolpin, D, Wood, F |
---|---|
التنسيق: | Conference item |
منشور في: |
Journal of Machine Learning Research
2016
|
مواد مشابهة
-
Output-sensitive Adaptive Metropolis-Hastings for probabilistic programs
حسب: Tolpin, D, وآخرون
منشور في: (2015) -
Maximum a posteriori estimation by search in probabilistic programs
حسب: Tolpin, D, وآخرون
منشور في: (2015) -
Bayesian Optimization for Probabilistic Programs
حسب: Rainforth, T, وآخرون
منشور في: (2016) -
Particle Gibbs with Ancestor Sampling for Probabilistic Programs
حسب: van de Meent, J, وآخرون
منشور في: (2015) -
Particle Gibbs with ancestor sampling for probabilistic programs
حسب: Meent, J, وآخرون
منشور في: (2015)