Black-box policy search with probabilistic programs
In this work we show how to represent policies as programs: that is, as stochastic simulators with tunable parameters. To learn the parameters of such policies we develop connections between black box variational inference and existing policy search approaches. We then explain how such learning can...
Hlavní autoři: | Van De Meent, J, Paige, B, Tolpin, D, Wood, F |
---|---|
Médium: | Conference item |
Vydáno: |
Journal of Machine Learning Research
2016
|
Podobné jednotky
-
Output-sensitive Adaptive Metropolis-Hastings for probabilistic programs
Autor: Tolpin, D, a další
Vydáno: (2015) -
Maximum a posteriori estimation by search in probabilistic programs
Autor: Tolpin, D, a další
Vydáno: (2015) -
Bayesian Optimization for Probabilistic Programs
Autor: Rainforth, T, a další
Vydáno: (2016) -
Particle Gibbs with Ancestor Sampling for Probabilistic Programs
Autor: van de Meent, J, a další
Vydáno: (2015) -
Particle Gibbs with ancestor sampling for probabilistic programs
Autor: Meent, J, a další
Vydáno: (2015)