Black-box policy search with probabilistic programs
In this work we show how to represent policies as programs: that is, as stochastic simulators with tunable parameters. To learn the parameters of such policies we develop connections between black box variational inference and existing policy search approaches. We then explain how such learning can...
Main Authors: | Van De Meent, J, Paige, B, Tolpin, D, Wood, F |
---|---|
פורמט: | Conference item |
יצא לאור: |
Journal of Machine Learning Research
2016
|
פריטים דומים
-
Output-sensitive Adaptive Metropolis-Hastings for probabilistic programs
מאת: Tolpin, D, et al.
יצא לאור: (2015) -
Maximum a posteriori estimation by search in probabilistic programs
מאת: Tolpin, D, et al.
יצא לאור: (2015) -
Bayesian Optimization for Probabilistic Programs
מאת: Rainforth, T, et al.
יצא לאור: (2016) -
Particle Gibbs with Ancestor Sampling for Probabilistic Programs
מאת: van de Meent, J, et al.
יצא לאור: (2015) -
Particle Gibbs with ancestor sampling for probabilistic programs
מאת: Meent, J, et al.
יצא לאור: (2015)