Black-box policy search with probabilistic programs
In this work we show how to represent policies as programs: that is, as stochastic simulators with tunable parameters. To learn the parameters of such policies we develop connections between black box variational inference and existing policy search approaches. We then explain how such learning can...
Principais autores: | Van De Meent, J, Paige, B, Tolpin, D, Wood, F |
---|---|
Formato: | Conference item |
Publicado em: |
Journal of Machine Learning Research
2016
|
Registros relacionados
-
Output-sensitive Adaptive Metropolis-Hastings for probabilistic programs
por: Tolpin, D, et al.
Publicado em: (2015) -
Maximum a posteriori estimation by search in probabilistic programs
por: Tolpin, D, et al.
Publicado em: (2015) -
Bayesian Optimization for Probabilistic Programs
por: Rainforth, T, et al.
Publicado em: (2016) -
Particle Gibbs with Ancestor Sampling for Probabilistic Programs
por: van de Meent, J, et al.
Publicado em: (2015) -
Particle Gibbs with ancestor sampling for probabilistic programs
por: Meent, J, et al.
Publicado em: (2015)