Black-box policy search with probabilistic programs
In this work we show how to represent policies as programs: that is, as stochastic simulators with tunable parameters. To learn the parameters of such policies we develop connections between black box variational inference and existing policy search approaches. We then explain how such learning can...
Автори: | Van De Meent, J, Paige, B, Tolpin, D, Wood, F |
---|---|
Формат: | Conference item |
Опубліковано: |
Journal of Machine Learning Research
2016
|
Схожі ресурси
-
Output-sensitive Adaptive Metropolis-Hastings for probabilistic programs
за авторством: Tolpin, D, та інші
Опубліковано: (2015) -
Maximum a posteriori estimation by search in probabilistic programs
за авторством: Tolpin, D, та інші
Опубліковано: (2015) -
Bayesian Optimization for Probabilistic Programs
за авторством: Rainforth, T, та інші
Опубліковано: (2016) -
Particle Gibbs with Ancestor Sampling for Probabilistic Programs
за авторством: van de Meent, J, та інші
Опубліковано: (2015) -
Particle Gibbs with ancestor sampling for probabilistic programs
за авторством: Meent, J, та інші
Опубліковано: (2015)