Highest weights, projective geometry, and the classical limit: I. Geometrical aspects and the classical limit

This paper starts with a new proof that highest weight vectors for semi-simple Lie group representations can be characterised by quadratic equations, and finds the automorphism group of this quadratic variety. The idea is illustrated by various geometrical examples. Various generalisations to Cliffo...

Ամբողջական նկարագրություն

Մատենագիտական մանրամասներ
Հիմնական հեղինակ: Hannabuss, K
Ձևաչափ: Journal article
Լեզու:English
Հրապարակվել է: 2000
Նկարագրություն
Ամփոփում:This paper starts with a new proof that highest weight vectors for semi-simple Lie group representations can be characterised by quadratic equations, and finds the automorphism group of this quadratic variety. The idea is illustrated by various geometrical examples. Various generalisations to Clifford algebras and quantum groups are explored, as well as the relationship between geometry, second quantisation, and the classical limit. © 2000 Elsevier Science B.V.