Global convergence rate analysis of unconstrained optimization methods based on probabilistic models
We present global convergence rates for a line-search method which is based on random first-order models and directions whose quality is ensured only with certain probability. We show that in terms of the order of the accuracy, the evaluation complexity of such a method is the same as its counterpar...
Hlavní autoři: | Cartis, C, Scheinberg, K |
---|---|
Médium: | Journal article |
Vydáno: |
Springer Berlin Heidelberg
2017
|
Podobné jednotky
-
Adaptive cubic regularisation methods for unconstrained optimization. Part I: motivation, convergence and numerical results.
Autor: Cartis, C, a další
Vydáno: (2011) -
Convergence rate analysis of a stochastic trust-region method via supermartingales
Autor: Blanchet, J, a další
Vydáno: (2019) -
Adaptive cubic overestimation methods for unconstrained optimization
Autor: Cartis, C, a další
Vydáno: (2007) -
Adaptive cubic overestimation methods for unconstrained optimization
Autor: Cartis, C, a další
Vydáno: (2007) -
Global convergence of conjugate gradient method in unconstrained optimization problems
Autor: Huda Younus Najm, a další
Vydáno: (2019-10-01)