Residual-free bubbles for advection-diffusion problems: the general error analysis

We develop the general a priori error analysis of residual-free bubble finite element approximations to non-self-adjoint elliptic problems of the form (εA + C)u = f subject to homogeneous Dirichlet boundary condition, where A is a symmetric second-order elliptic operator, C is a skew-symmetric first...

Full description

Bibliographic Details
Main Authors: Brezzi, F, Marini, D, Suli, E
Format: Journal article
Language:English
Published: 2000
_version_ 1826267906217869312
author Brezzi, F
Marini, D
Suli, E
author_facet Brezzi, F
Marini, D
Suli, E
author_sort Brezzi, F
collection OXFORD
description We develop the general a priori error analysis of residual-free bubble finite element approximations to non-self-adjoint elliptic problems of the form (εA + C)u = f subject to homogeneous Dirichlet boundary condition, where A is a symmetric second-order elliptic operator, C is a skew-symmetric first-order differential operator, and ε is a positive parameter. Optimal-order error bounds are derived in various norms, using piecewise polynomial finite elements of degree k ≥ 1.
first_indexed 2024-03-06T21:01:26Z
format Journal article
id oxford-uuid:3b00c8f4-4115-4ad6-8282-d6cab0f4cedd
institution University of Oxford
language English
last_indexed 2024-03-06T21:01:26Z
publishDate 2000
record_format dspace
spelling oxford-uuid:3b00c8f4-4115-4ad6-8282-d6cab0f4cedd2022-03-26T14:05:01ZResidual-free bubbles for advection-diffusion problems: the general error analysisJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:3b00c8f4-4115-4ad6-8282-d6cab0f4ceddEnglishSymplectic Elements at Oxford2000Brezzi, FMarini, DSuli, EWe develop the general a priori error analysis of residual-free bubble finite element approximations to non-self-adjoint elliptic problems of the form (εA + C)u = f subject to homogeneous Dirichlet boundary condition, where A is a symmetric second-order elliptic operator, C is a skew-symmetric first-order differential operator, and ε is a positive parameter. Optimal-order error bounds are derived in various norms, using piecewise polynomial finite elements of degree k ≥ 1.
spellingShingle Brezzi, F
Marini, D
Suli, E
Residual-free bubbles for advection-diffusion problems: the general error analysis
title Residual-free bubbles for advection-diffusion problems: the general error analysis
title_full Residual-free bubbles for advection-diffusion problems: the general error analysis
title_fullStr Residual-free bubbles for advection-diffusion problems: the general error analysis
title_full_unstemmed Residual-free bubbles for advection-diffusion problems: the general error analysis
title_short Residual-free bubbles for advection-diffusion problems: the general error analysis
title_sort residual free bubbles for advection diffusion problems the general error analysis
work_keys_str_mv AT brezzif residualfreebubblesforadvectiondiffusionproblemsthegeneralerroranalysis
AT marinid residualfreebubblesforadvectiondiffusionproblemsthegeneralerroranalysis
AT sulie residualfreebubblesforadvectiondiffusionproblemsthegeneralerroranalysis