Residual-free bubbles for advection-diffusion problems: the general error analysis
We develop the general a priori error analysis of residual-free bubble finite element approximations to non-self-adjoint elliptic problems of the form (εA + C)u = f subject to homogeneous Dirichlet boundary condition, where A is a symmetric second-order elliptic operator, C is a skew-symmetric first...
Main Authors: | , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
2000
|
_version_ | 1826267906217869312 |
---|---|
author | Brezzi, F Marini, D Suli, E |
author_facet | Brezzi, F Marini, D Suli, E |
author_sort | Brezzi, F |
collection | OXFORD |
description | We develop the general a priori error analysis of residual-free bubble finite element approximations to non-self-adjoint elliptic problems of the form (εA + C)u = f subject to homogeneous Dirichlet boundary condition, where A is a symmetric second-order elliptic operator, C is a skew-symmetric first-order differential operator, and ε is a positive parameter. Optimal-order error bounds are derived in various norms, using piecewise polynomial finite elements of degree k ≥ 1. |
first_indexed | 2024-03-06T21:01:26Z |
format | Journal article |
id | oxford-uuid:3b00c8f4-4115-4ad6-8282-d6cab0f4cedd |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-06T21:01:26Z |
publishDate | 2000 |
record_format | dspace |
spelling | oxford-uuid:3b00c8f4-4115-4ad6-8282-d6cab0f4cedd2022-03-26T14:05:01ZResidual-free bubbles for advection-diffusion problems: the general error analysisJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:3b00c8f4-4115-4ad6-8282-d6cab0f4ceddEnglishSymplectic Elements at Oxford2000Brezzi, FMarini, DSuli, EWe develop the general a priori error analysis of residual-free bubble finite element approximations to non-self-adjoint elliptic problems of the form (εA + C)u = f subject to homogeneous Dirichlet boundary condition, where A is a symmetric second-order elliptic operator, C is a skew-symmetric first-order differential operator, and ε is a positive parameter. Optimal-order error bounds are derived in various norms, using piecewise polynomial finite elements of degree k ≥ 1. |
spellingShingle | Brezzi, F Marini, D Suli, E Residual-free bubbles for advection-diffusion problems: the general error analysis |
title | Residual-free bubbles for advection-diffusion problems: the general error analysis |
title_full | Residual-free bubbles for advection-diffusion problems: the general error analysis |
title_fullStr | Residual-free bubbles for advection-diffusion problems: the general error analysis |
title_full_unstemmed | Residual-free bubbles for advection-diffusion problems: the general error analysis |
title_short | Residual-free bubbles for advection-diffusion problems: the general error analysis |
title_sort | residual free bubbles for advection diffusion problems the general error analysis |
work_keys_str_mv | AT brezzif residualfreebubblesforadvectiondiffusionproblemsthegeneralerroranalysis AT marinid residualfreebubblesforadvectiondiffusionproblemsthegeneralerroranalysis AT sulie residualfreebubblesforadvectiondiffusionproblemsthegeneralerroranalysis |