Arbitrarily large p-torsion in Tate-Shafarevich groups
We show that, for any prime p, there exist absolutely simple abelian varieties over Q with arbitrarily large p-torsion in their Tate-Shafarevich groups. To prove this, we construct explicit µp-covers of Jacobians of curves of the form y p = x(x − 1)(x − a) which violate the Hasse principle. In the a...
Главные авторы: | Flynn, E, Shnidman, A, Fisher, T |
---|---|
Формат: | Journal article |
Язык: | English |
Опубликовано: |
Cambridge University Press
2024
|
Схожие документы
-
Arbitrarily large 2-torsion in Tate-Shafarevich groups of Abelian varieties
по: Flynn, E
Опубликовано: (2019) -
Arbitrarily large Tate–Shafarevich group on Abelian surfaces
по: Flynn, E
Опубликовано: (2017) -
Genus two curves with full √3-level structure and Tate-Shafarevich groups
по: Bruin, N, и др.
Опубликовано: (2023) -
Modeling the distribution of ranks, Selmer groups, and Shafarevich–Tate groups of elliptic curves
по: Bhargava, Manjul, и др.
Опубликовано: (2017) -
Modular curves, the Tate-Shafarevich group and Gopakumar-Vafa invariants with discrete charges
по: Thorsten Schimannek
Опубликовано: (2022-02-01)