Arbitrarily large p-torsion in Tate-Shafarevich groups
We show that, for any prime p, there exist absolutely simple abelian varieties over Q with arbitrarily large p-torsion in their Tate-Shafarevich groups. To prove this, we construct explicit µp-covers of Jacobians of curves of the form y p = x(x − 1)(x − a) which violate the Hasse principle. In the a...
Những tác giả chính: | Flynn, E, Shnidman, A, Fisher, T |
---|---|
Định dạng: | Journal article |
Ngôn ngữ: | English |
Được phát hành: |
Cambridge University Press
2024
|
Những quyển sách tương tự
-
Arbitrarily large 2-torsion in Tate-Shafarevich groups of Abelian varieties
Bằng: Flynn, E
Được phát hành: (2019) -
Arbitrarily large Tate–Shafarevich group on Abelian surfaces
Bằng: Flynn, E
Được phát hành: (2017) -
Genus two curves with full √3-level structure and Tate-Shafarevich groups
Bằng: Bruin, N, et al.
Được phát hành: (2023) -
Modeling the distribution of ranks, Selmer groups, and Shafarevich–Tate groups of elliptic curves
Bằng: Bhargava, Manjul, et al.
Được phát hành: (2017) -
Modular curves, the Tate-Shafarevich group and Gopakumar-Vafa invariants with discrete charges
Bằng: Thorsten Schimannek
Được phát hành: (2022-02-01)