Localization for quantum groups at a root of unity
In the paper \cite{BK} we defined categories of equivariant quantum $\mathcal{O}_q$-modules and $\mathcal{D}_q$-modules on the quantum flag variety of $G$. We proved that the Beilinson-Bernstein localization theorem holds at a generic $q$. Here we prove that a derived version of this theorem holds a...
Hlavní autoři: | Backelin, E, Kremnizer, K |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
2004
|
Podobné jednotky
-
Quantum flag varieties, equivariant quantum D-modules and localization
of quantum groups
Autor: Backelin, E, a další
Vydáno: (2004) -
Singular localization for Quantum groups at generic $q$
Autor: Backelin, E, a další
Vydáno: (2011) -
Global quantum differential operators on quantum flag manifolds,
theorems of Duflo and Kostant
Autor: Backelin, E, a další
Vydáno: (2011) -
On Singular Localization of $\mathfrak{g}$-modules
Autor: Backelin, E, a další
Vydáno: (2010) -
Langlands duality for representations and quantum groups at a root of
unity
Autor: McGerty, K
Vydáno: (2009)