Quantum simulators based on the global collective light-matter interaction
We show that coupling ultracold atoms in optical lattices to quantized modes of an optical cavity leads to quantum phases of matter, which at the same time posses properties of systems with both short- and long-range interactions. This opens perspectives for novel quantum simulators of finite-range...
Main Authors: | , , |
---|---|
Format: | Journal article |
Published: |
American Physical Society
2016
|
_version_ | 1797063700045103104 |
---|---|
author | Caballero-Benitez, S Mazzucchi, G Mekhov, I |
author_facet | Caballero-Benitez, S Mazzucchi, G Mekhov, I |
author_sort | Caballero-Benitez, S |
collection | OXFORD |
description | We show that coupling ultracold atoms in optical lattices to quantized modes of an optical cavity leads to quantum phases of matter, which at the same time posses properties of systems with both short- and long-range interactions. This opens perspectives for novel quantum simulators of finite-range interacting systems, even though the light-induced interaction is global (i.e. infinitely long range). This is achieved by spatial structuring of the global light-matter coupling at a microscopic scale. Such simulators can directly benefit from the collective enhancement of the global lightmatter interaction and constitute an alternative to standard approaches using Rydberg atoms or polar molecules. The system in the steady state of light induces effective many-body interactions that change the landscape of the phase diagram of the typical Bose-Hubbard model. Therefore, the system can support non-trivial superfluid states, bosonic dimer, trimers, etc. states and supersolid phases depending on the choice of the wavelength and pattern of the light with respect to the classical optical lattice potential. We find that by carefully choosing the system parameters one can investigate diverse strongly correlated physics with the same setup, i.e., modifying the geometry of light beams. In particular, we present the interplay between the density and bond (or matter-wave coherence) interactions. We show how to tune the effective interaction length in such a hybrid system with both short-range and global interactions. |
first_indexed | 2024-03-06T21:03:39Z |
format | Journal article |
id | oxford-uuid:3bb96e2c-538b-40a5-9583-473de979cd18 |
institution | University of Oxford |
last_indexed | 2024-03-06T21:03:39Z |
publishDate | 2016 |
publisher | American Physical Society |
record_format | dspace |
spelling | oxford-uuid:3bb96e2c-538b-40a5-9583-473de979cd182022-03-26T14:09:15ZQuantum simulators based on the global collective light-matter interactionJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:3bb96e2c-538b-40a5-9583-473de979cd18Symplectic Elements at OxfordAmerican Physical Society2016Caballero-Benitez, SMazzucchi, GMekhov, IWe show that coupling ultracold atoms in optical lattices to quantized modes of an optical cavity leads to quantum phases of matter, which at the same time posses properties of systems with both short- and long-range interactions. This opens perspectives for novel quantum simulators of finite-range interacting systems, even though the light-induced interaction is global (i.e. infinitely long range). This is achieved by spatial structuring of the global light-matter coupling at a microscopic scale. Such simulators can directly benefit from the collective enhancement of the global lightmatter interaction and constitute an alternative to standard approaches using Rydberg atoms or polar molecules. The system in the steady state of light induces effective many-body interactions that change the landscape of the phase diagram of the typical Bose-Hubbard model. Therefore, the system can support non-trivial superfluid states, bosonic dimer, trimers, etc. states and supersolid phases depending on the choice of the wavelength and pattern of the light with respect to the classical optical lattice potential. We find that by carefully choosing the system parameters one can investigate diverse strongly correlated physics with the same setup, i.e., modifying the geometry of light beams. In particular, we present the interplay between the density and bond (or matter-wave coherence) interactions. We show how to tune the effective interaction length in such a hybrid system with both short-range and global interactions. |
spellingShingle | Caballero-Benitez, S Mazzucchi, G Mekhov, I Quantum simulators based on the global collective light-matter interaction |
title | Quantum simulators based on the global collective light-matter interaction |
title_full | Quantum simulators based on the global collective light-matter interaction |
title_fullStr | Quantum simulators based on the global collective light-matter interaction |
title_full_unstemmed | Quantum simulators based on the global collective light-matter interaction |
title_short | Quantum simulators based on the global collective light-matter interaction |
title_sort | quantum simulators based on the global collective light matter interaction |
work_keys_str_mv | AT caballerobenitezs quantumsimulatorsbasedontheglobalcollectivelightmatterinteraction AT mazzucchig quantumsimulatorsbasedontheglobalcollectivelightmatterinteraction AT mekhovi quantumsimulatorsbasedontheglobalcollectivelightmatterinteraction |