Dissipation-induced correlations in one-dimensional bosonic systems
The quantum dynamics of interacting bosons in a one-dimensional (1D) system is investigated numerically. We consider dissipative and conservative two-particle interactions, and integrate the master equation describing the system dynamics via a time-evolving block-decimation (TEBD) algorithm. Our num...
Autors principals: | , |
---|---|
Format: | Journal article |
Idioma: | English |
Publicat: |
2011
|
Sumari: | The quantum dynamics of interacting bosons in a one-dimensional (1D) system is investigated numerically. We consider dissipative and conservative two-particle interactions, and integrate the master equation describing the system dynamics via a time-evolving block-decimation (TEBD) algorithm. Our numerical simulations directly apply to stationary-light polaritons in systems where atoms and photons are confined to the hollow core of a photonic crystal fibre. We show that a two-particle loss term can drive an initially uncorrelated state into a regime where correlations effectively inhibit the dissipation of particles. The correlations induced by two-particle losses are compared with those generated by an elastic repulsion. For the considered time range, we find a similar behaviour in local density-density correlations but we find differences in non-local correlations. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft. |
---|