Auto-encoding sequential Monte Carlo
We build on auto-encoding sequential Monte Carlo (AESMC): a method for model and proposal learning based on maximizing the lower bound to the log marginal likelihood in a broad family of structured probabilistic models. Our approach relies on the efficiency of sequential Monte Carlo (SMC) for perfor...
Main Authors: | Le, T, Igl, M, Rainforth, T, Jin, T, Wood, F |
---|---|
格式: | Conference item |
出版: |
OpenReview
2018
|
相似書籍
-
Monte Carlo variational auto-encoders
由: Thin, A, et al.
出版: (2021) -
Amortized Monte Carlo integration
由: Goliński, A, et al.
出版: (2019) -
On nesting Monte Carlo estimators
由: Rainforth, T, et al.
出版: (2019) -
Sequential Monte Carlo with transformations
由: Everitt, RG, et al.
出版: (2019) -
Sequential Monte Carlo samplers
由: Del Moral, P, et al.
出版: (2006)