Auto-encoding sequential Monte Carlo
We build on auto-encoding sequential Monte Carlo (AESMC): a method for model and proposal learning based on maximizing the lower bound to the log marginal likelihood in a broad family of structured probabilistic models. Our approach relies on the efficiency of sequential Monte Carlo (SMC) for perfor...
Main Authors: | Le, T, Igl, M, Rainforth, T, Jin, T, Wood, F |
---|---|
Format: | Conference item |
Udgivet: |
OpenReview
2018
|
Lignende værker
-
Monte Carlo variational auto-encoders
af: Thin, A, et al.
Udgivet: (2021) -
Amortized Monte Carlo integration
af: Goliński, A, et al.
Udgivet: (2019) -
On nesting Monte Carlo estimators
af: Rainforth, T, et al.
Udgivet: (2019) -
Sequential Monte Carlo with transformations
af: Everitt, RG, et al.
Udgivet: (2019) -
Sequential Monte Carlo samplers
af: Del Moral, P, et al.
Udgivet: (2006)