The antitriangular factorization of saddle point matrices
Mastronardi and Van Dooren [SIAM J. Matrix Anal. Appl., 34 (2013), pp. 173–196] recently introduced the block antitriangular (“Batman”) decomposition for symmetric indefinite matrices. Here we show the simplification of this factorization for saddle point matrices and demonstrate how it represents t...
Autors principals: | Pestana, J, Wathen, A |
---|---|
Format: | Journal article |
Publicat: |
Society for Industrial and Applied Mathematics
2014
|
Ítems similars
-
The antitriangular factorisation of saddle point matrices
per: Pestana, J, et al.
Publicat: (2013) -
Approximate factorization constraint preconditioners for saddle-point matrices
per: Dollar, H, et al.
Publicat: (2006) -
Incomplete factorization constraint preconditioners for saddle-point matrices
per: Dollar, H, et al.
Publicat: (2004) -
Natural preconditioners for saddle point systems
per: Pestana, J, et al.
Publicat: (2013) -
On the eigenvalues and eigenvectors of nonsymmetric saddle point matrices preconditioned by block triangular matrices
per: Pestana, J
Publicat: (2013)