The antitriangular factorization of saddle point matrices
Mastronardi and Van Dooren [SIAM J. Matrix Anal. Appl., 34 (2013), pp. 173–196] recently introduced the block antitriangular (“Batman”) decomposition for symmetric indefinite matrices. Here we show the simplification of this factorization for saddle point matrices and demonstrate how it represents t...
Autores principales: | Pestana, J, Wathen, A |
---|---|
Formato: | Journal article |
Publicado: |
Society for Industrial and Applied Mathematics
2014
|
Ejemplares similares
-
The antitriangular factorisation of saddle point matrices
por: Pestana, J, et al.
Publicado: (2013) -
Approximate factorization constraint preconditioners for saddle-point matrices
por: Dollar, H, et al.
Publicado: (2006) -
Incomplete factorization constraint preconditioners for saddle-point matrices
por: Dollar, H, et al.
Publicado: (2004) -
Natural preconditioners for saddle point systems
por: Pestana, J, et al.
Publicado: (2013) -
On the eigenvalues and eigenvectors of nonsymmetric saddle point matrices preconditioned by block triangular matrices
por: Pestana, J
Publicado: (2013)