The antitriangular factorization of saddle point matrices
Mastronardi and Van Dooren [SIAM J. Matrix Anal. Appl., 34 (2013), pp. 173–196] recently introduced the block antitriangular (“Batman”) decomposition for symmetric indefinite matrices. Here we show the simplification of this factorization for saddle point matrices and demonstrate how it represents t...
Principais autores: | Pestana, J, Wathen, A |
---|---|
Formato: | Journal article |
Publicado em: |
Society for Industrial and Applied Mathematics
2014
|
Registros relacionados
-
The antitriangular factorisation of saddle point matrices
por: Pestana, J, et al.
Publicado em: (2013) -
Approximate factorization constraint preconditioners for saddle-point matrices
por: Dollar, H, et al.
Publicado em: (2006) -
Incomplete factorization constraint preconditioners for saddle-point matrices
por: Dollar, H, et al.
Publicado em: (2004) -
Natural preconditioners for saddle point systems
por: Pestana, J, et al.
Publicado em: (2013) -
On the eigenvalues and eigenvectors of nonsymmetric saddle point matrices preconditioned by block triangular matrices
por: Pestana, J
Publicado em: (2013)