Rapid and efficient DNA strand cross-linking by click chemistry.
Click chemistry has been used to covalently cross-link complementary DNA strands between bases to form very stable duplexes. Several alkyne- and azide-modified uracil monomers were used to evaluate the effect of the linkers on the efficiency of the click reaction. All cross-linked duplexes had much...
Main Authors: | , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
2008
|
Summary: | Click chemistry has been used to covalently cross-link complementary DNA strands between bases to form very stable duplexes. Several alkyne- and azide-modified uracil monomers were used to evaluate the effect of the linkers on the efficiency of the click reaction. All cross-linked duplexes had much higher thermal stabilities than non-cross-linked ones, with increases in melting temperature of up to 30 degrees C. In some cases, the conversion was near-quantitative, and the reaction was complete in 5 min. |
---|