Bottom-up top-down cues for weakly-supervised semantic segmentation
We consider the task of learning a classifier for semantic segmentation using weak supervision in the form of image labels specifying objects present in the image. Our method uses deep convolutional neural networks (cnns) and adopts an Expectation-Maximization (EM) based approach. We focus on the fo...
Main Authors: | Hou, Q, Massiceti, D, Dokania, P, Wei, Y, Cheng, M, Torr, P |
---|---|
Formato: | Conference item |
Publicado em: |
Springer, Cham
2018
|
Registos relacionados
-
OBJCUT: efficient segmentation using top-down and bottom-up cues.
Por: Kumar, M, et al.
Publicado em: (2010) -
OBJCUT: efficient segmentation using top-down and bottom-up cues
Por: Kumar, MP, et al.
Publicado em: (2009) -
Discovering class-specific pixels for weakly-supervised semantic segmentation
Por: Chaudhry, A, et al.
Publicado em: (2017) -
Exploring bottom-up and top-down cues with attentive learning for webly supervised object detection
Por: Wu, Zhonghua, et al.
Publicado em: (2020) -
Bottom-up or top-down?
Por: Johansen-Berg, H
Publicado em: (2001)