NeuroMorph: unsupervised shape interpolation and correspondence in one go
We present NeuroMorph, a new neural network architecture that takes as input two 3D shapes and produces in one go, i.e. in a single feed forward pass, a smooth interpolation and point-to-point correspondences between them. The interpolation, expressed as a deformation field, changes the pose of the...
Автори: | Eisenberger, M, Novotny, D, Kerchenbaum, G, Labatut, P, Neverova, N, Cremers, D, Vedaldi, A |
---|---|
Формат: | Conference item |
Мова: | English |
Опубліковано: |
IEEE
2021
|
Схожі ресурси
Схожі ресурси
-
Correlated uncertainty for learning dense correspondences from noisy labels
за авторством: Neverova, N, та інші
Опубліковано: (2019) -
Unsupervised learning of 3D object categories from videos in the wild
за авторством: Henzler, P, та інші
Опубліковано: (2021) -
Discovering relationships between object categories via universal canonical maps
за авторством: Neverova, N, та інші
Опубліковано: (2021) -
Low-power neuromorphic circuits for unsupervised spike based learning
за авторством: He, Tong
Опубліковано: (2016) -
One-pot fabrication of bio-inspired shape-morphing bilayer structures
за авторством: Yang, Yuanhang, та інші
Опубліковано: (2025)