Dicer regulates Xist promoter methylation in ES cells indirectly through transcriptional control of Dnmt3a.

BACKGROUND: X chromosome inactivation is the mechanism used in mammals to achieve dosage compensation of X-linked genes in XX females relative to XY males. Chromosome silencing is triggered in cis by expression of the non-coding RNA Xist. As such, correct regulation of the Xist gene promoter is requ...

Full description

Bibliographic Details
Main Authors: Nesterova, T, Popova, B, Cobb, B, Norton, S, Senner, C, Tang, Y, Spruce, T, Rodriguez, T, Sado, T, Merkenschlager, M, Brockdorff, N
Format: Journal article
Language:English
Published: 2008
_version_ 1797064077023903744
author Nesterova, T
Popova, B
Cobb, B
Norton, S
Senner, C
Tang, Y
Spruce, T
Rodriguez, T
Sado, T
Merkenschlager, M
Brockdorff, N
author_facet Nesterova, T
Popova, B
Cobb, B
Norton, S
Senner, C
Tang, Y
Spruce, T
Rodriguez, T
Sado, T
Merkenschlager, M
Brockdorff, N
author_sort Nesterova, T
collection OXFORD
description BACKGROUND: X chromosome inactivation is the mechanism used in mammals to achieve dosage compensation of X-linked genes in XX females relative to XY males. Chromosome silencing is triggered in cis by expression of the non-coding RNA Xist. As such, correct regulation of the Xist gene promoter is required to establish appropriate X chromosome activity both in males and females. Studies to date have demonstrated co-transcription of an antisense RNA Tsix and low-level sense transcription prior to onset of X inactivation. The balance of sense and antisense RNA is important in determining the probability that a given Xist allele will be expressed, termed the X inactivation choice, when X inactivation commences. RESULTS: Here we investigate further the mechanism of Xist promoter regulation. We demonstrate that both sense and antisense transcription modulate Xist promoter DNA methylation in undifferentiated embryonic stem (ES) cells, suggesting a possible mechanistic basis for influencing X chromosome choice. Given the involvement of sense and antisense RNAs in promoter methylation, we investigate a possible role for the RNA interference (RNAi) pathway. We show that the Xist promoter is hypomethylated in ES cells deficient for the essential RNAi enzyme Dicer, but that this effect is probably a secondary consequence of reduced levels of de novo DNA methyltransferases in these cells. Consistent with this we find that Dicer-deficient XY and XX embryos show appropriate Xist expression patterns, indicating that Xist gene regulation has not been perturbed. CONCLUSION: We conclude that Xist promoter methylation prior to the onset of random X chromosome inactivation is influenced by relative levels of sense and antisense transcription but that this probably occurs independent of the RNAi pathway. We discuss the implications for this data in terms of understanding Xist gene regulation and X chromosome choice in random X chromosome inactivation.
first_indexed 2024-03-06T21:09:07Z
format Journal article
id oxford-uuid:3d87eeff-a599-430d-ab02-52e59065792c
institution University of Oxford
language English
last_indexed 2024-03-06T21:09:07Z
publishDate 2008
record_format dspace
spelling oxford-uuid:3d87eeff-a599-430d-ab02-52e59065792c2022-03-26T14:19:58ZDicer regulates Xist promoter methylation in ES cells indirectly through transcriptional control of Dnmt3a.Journal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:3d87eeff-a599-430d-ab02-52e59065792cEnglishSymplectic Elements at Oxford2008Nesterova, TPopova, BCobb, BNorton, SSenner, CTang, YSpruce, TRodriguez, TSado, TMerkenschlager, MBrockdorff, NBACKGROUND: X chromosome inactivation is the mechanism used in mammals to achieve dosage compensation of X-linked genes in XX females relative to XY males. Chromosome silencing is triggered in cis by expression of the non-coding RNA Xist. As such, correct regulation of the Xist gene promoter is required to establish appropriate X chromosome activity both in males and females. Studies to date have demonstrated co-transcription of an antisense RNA Tsix and low-level sense transcription prior to onset of X inactivation. The balance of sense and antisense RNA is important in determining the probability that a given Xist allele will be expressed, termed the X inactivation choice, when X inactivation commences. RESULTS: Here we investigate further the mechanism of Xist promoter regulation. We demonstrate that both sense and antisense transcription modulate Xist promoter DNA methylation in undifferentiated embryonic stem (ES) cells, suggesting a possible mechanistic basis for influencing X chromosome choice. Given the involvement of sense and antisense RNAs in promoter methylation, we investigate a possible role for the RNA interference (RNAi) pathway. We show that the Xist promoter is hypomethylated in ES cells deficient for the essential RNAi enzyme Dicer, but that this effect is probably a secondary consequence of reduced levels of de novo DNA methyltransferases in these cells. Consistent with this we find that Dicer-deficient XY and XX embryos show appropriate Xist expression patterns, indicating that Xist gene regulation has not been perturbed. CONCLUSION: We conclude that Xist promoter methylation prior to the onset of random X chromosome inactivation is influenced by relative levels of sense and antisense transcription but that this probably occurs independent of the RNAi pathway. We discuss the implications for this data in terms of understanding Xist gene regulation and X chromosome choice in random X chromosome inactivation.
spellingShingle Nesterova, T
Popova, B
Cobb, B
Norton, S
Senner, C
Tang, Y
Spruce, T
Rodriguez, T
Sado, T
Merkenschlager, M
Brockdorff, N
Dicer regulates Xist promoter methylation in ES cells indirectly through transcriptional control of Dnmt3a.
title Dicer regulates Xist promoter methylation in ES cells indirectly through transcriptional control of Dnmt3a.
title_full Dicer regulates Xist promoter methylation in ES cells indirectly through transcriptional control of Dnmt3a.
title_fullStr Dicer regulates Xist promoter methylation in ES cells indirectly through transcriptional control of Dnmt3a.
title_full_unstemmed Dicer regulates Xist promoter methylation in ES cells indirectly through transcriptional control of Dnmt3a.
title_short Dicer regulates Xist promoter methylation in ES cells indirectly through transcriptional control of Dnmt3a.
title_sort dicer regulates xist promoter methylation in es cells indirectly through transcriptional control of dnmt3a
work_keys_str_mv AT nesterovat dicerregulatesxistpromotermethylationinescellsindirectlythroughtranscriptionalcontrolofdnmt3a
AT popovab dicerregulatesxistpromotermethylationinescellsindirectlythroughtranscriptionalcontrolofdnmt3a
AT cobbb dicerregulatesxistpromotermethylationinescellsindirectlythroughtranscriptionalcontrolofdnmt3a
AT nortons dicerregulatesxistpromotermethylationinescellsindirectlythroughtranscriptionalcontrolofdnmt3a
AT sennerc dicerregulatesxistpromotermethylationinescellsindirectlythroughtranscriptionalcontrolofdnmt3a
AT tangy dicerregulatesxistpromotermethylationinescellsindirectlythroughtranscriptionalcontrolofdnmt3a
AT sprucet dicerregulatesxistpromotermethylationinescellsindirectlythroughtranscriptionalcontrolofdnmt3a
AT rodriguezt dicerregulatesxistpromotermethylationinescellsindirectlythroughtranscriptionalcontrolofdnmt3a
AT sadot dicerregulatesxistpromotermethylationinescellsindirectlythroughtranscriptionalcontrolofdnmt3a
AT merkenschlagerm dicerregulatesxistpromotermethylationinescellsindirectlythroughtranscriptionalcontrolofdnmt3a
AT brockdorffn dicerregulatesxistpromotermethylationinescellsindirectlythroughtranscriptionalcontrolofdnmt3a