Rectifiability of the reduced boundary for sets of finite perimeter over RCD(K,N) spaces
This paper is devoted to the study of sets of finite perimeter in RCD(K,N) metric measure spaces. Its aim is to complete the picture of the generalization of De Giorgi’s theorem within this framework. Starting from the results of Ambrosio et al. (2019) we obtain uniqueness of tangents and rectifiab...
主要な著者: | Bruè, E, Pasqualetto, E, Semola, D |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
EMS Press
2022
|
類似資料
-
Rectifiability of RCD(K,N) spaces via δ-splitting maps
著者:: Bruè, E, 等
出版事項: (2021) -
Rigidity of the 1-Bakry–Émery inequality and sets of finite perimeter in RCD spaces
著者:: Ambrosio, L, 等
出版事項: (2019) -
Constancy of the dimension in codimension one and locality of the unit normal on RCD(K,N) spaces
著者:: Bruè, E, 等
出版事項: (2022) -
Regularity of Lagrangian flows over RCD*(K, N) spaces
著者:: Brué, E, 等
出版事項: (2019) -
Monotonicity formula and stratification of the singular set of perimeter minimizers in RCD spaces
著者:: Fiorani, F, 等
出版事項: (2025)