Rectifiability of the reduced boundary for sets of finite perimeter over RCD(K,N) spaces
This paper is devoted to the study of sets of finite perimeter in RCD(K,N) metric measure spaces. Its aim is to complete the picture of the generalization of De Giorgi’s theorem within this framework. Starting from the results of Ambrosio et al. (2019) we obtain uniqueness of tangents and rectifiab...
Main Authors: | Bruè, E, Pasqualetto, E, Semola, D |
---|---|
格式: | Journal article |
语言: | English |
出版: |
EMS Press
2022
|
相似书籍
-
Rectifiability of RCD(K,N) spaces via δ-splitting maps
由: Bruè, E, et al.
出版: (2021) -
Rigidity of the 1-Bakry–Émery inequality and sets of finite perimeter in RCD spaces
由: Ambrosio, L, et al.
出版: (2019) -
Constancy of the dimension in codimension one and locality of the unit normal on RCD(K,N) spaces
由: Bruè, E, et al.
出版: (2022) -
Regularity of Lagrangian flows over RCD*(K, N) spaces
由: Brué, E, et al.
出版: (2019) -
Monotonicity formula and stratification of the singular set of perimeter minimizers in RCD spaces
由: Fiorani, F, et al.
出版: (2025)