Spectral approximation of banded Laurent matrices with localized random perturbations
This paper explores the relationship between the spectra of perturbed infinite banded Laurent matrices $L(a)+K$ and their approximations by perturbed circulant matrices $C_{n}(a)+P_{n}KP_{n}$ for large $n$. The entries $K_{jk}$ of the perturbation matrices assume values in prescribed sets $\Omega_{j...
Hlavní autoři: | Boettcher, A, Embree, M, Lindner, M |
---|---|
Médium: | Report |
Vydáno: |
Unspecified
2001
|
Podobné jednotky
-
Infinite Toeplitz and Laurent matrices with localized impurities
Autor: Boettcher, A, a další
Vydáno: (2000) -
The Spectra of Large Toeplitz Band Matrices with a Randomly Perturbed Entry
Autor: Boettcher, A, a další
Vydáno: (2001) -
On large Toeplitz band matrices with an uncertain block
Autor: Boettcher, A, a další
Vydáno: (2001) -
Spectra, pseudospectra, and localization for random bidiagonal matrices
Autor: Trefethen, L, a další
Vydáno: (2000) -
Piecewise continuous Toeplitz matrices and operators: slow approach to infinity
Autor: Boettcher, A, a další
Vydáno: (2000)