Surface wavepackets subject to an abrupt depth change. Part II: experimental analysis

Surface gravity wavepackets in intermediate water depth experiencing an abrupt depth decrease are investigated experimentally. The experiments provide validation for the second-order (in steepness) theory for narrow-banded surface gravity wavepackets experiencing a sudden depth transition derived in...

Full description

Bibliographic Details
Main Authors: Li, Y, Draycott, S, Adcock, T, Van Den Bremer, T
Format: Journal article
Language:English
Published: Cambridge University Press 2021
Description
Summary:Surface gravity wavepackets in intermediate water depth experiencing an abrupt depth decrease are investigated experimentally. The experiments provide validation for the second-order (in steepness) theory for narrow-banded surface gravity wavepackets experiencing a sudden depth transition derived in a companion paper (Li et al., J. Fluid Mech., 2021, 915, A71). We observe the generation of free second-order sub- and superharmonic wavepackets due to the sudden depth transition, in addition to changes to the main (first-order) wavepacket and its second-order bound waves. Locally, just after the step, this leads to the superposition of different wavepacket components. Thereafter, separation occurs because of the different group speeds of the free second-order sub- and superharmonic wavepackets compared with the main packet. Experiments show that the local superposition of waves can lead to significant amplification of wave crests near the top of a step, as predicted by theory. In addition to a step, we also experimentally examine more gradual depth changes in the form of 1 : 1 and 1 : 3 slopes to explore the limits of the theory's validity. Although we find small differences in amplitude and phase comparing these steep slopes with a step, these experiments suggest that the theoretical model derived in Part 1 for wavepackets travelling over a step is applicable to slopes steeper than 1 : 3.