Weighted cue integration in the rodent head direction system.
How the brain combines information from different sensory modalities and of differing reliability is an important and still-unanswered question. Using the head direction (HD) system as a model, we explored the resolution of conflicts between landmarks and background cues. Sensory cue integration mod...
Main Authors: | , , , , , , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
2014
|
_version_ | 1826268783151415296 |
---|---|
author | Knight, R Piette, C Page, H Walters, D Marozzi, E Nardini, M Stringer, S Jeffery, K |
author_facet | Knight, R Piette, C Page, H Walters, D Marozzi, E Nardini, M Stringer, S Jeffery, K |
author_sort | Knight, R |
collection | OXFORD |
description | How the brain combines information from different sensory modalities and of differing reliability is an important and still-unanswered question. Using the head direction (HD) system as a model, we explored the resolution of conflicts between landmarks and background cues. Sensory cue integration models predict averaging of the two cues, whereas attractor models predict capture of the signal by the dominant cue. We found that a visual landmark mostly captured the HD signal at low conflicts: however, there was an increasing propensity for the cells to integrate the cues thereafter. A large conflict presented to naive rats resulted in greater visual cue capture (less integration) than in experienced rats, revealing an effect of experience. We propose that weighted cue integration in HD cells arises from dynamic plasticity of the feed-forward inputs to the network, causing within-trial spatial redistribution of the visual inputs onto the ring. This suggests that an attractor network can implement decision processes about cue reliability using simple architecture and learning rules, thus providing a potential neural substrate for weighted cue integration. |
first_indexed | 2024-03-06T21:14:54Z |
format | Journal article |
id | oxford-uuid:3f710886-ebab-4bee-9255-fc9e63dc07d3 |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-06T21:14:54Z |
publishDate | 2014 |
record_format | dspace |
spelling | oxford-uuid:3f710886-ebab-4bee-9255-fc9e63dc07d32022-03-26T14:32:01ZWeighted cue integration in the rodent head direction system.Journal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:3f710886-ebab-4bee-9255-fc9e63dc07d3EnglishSymplectic Elements at Oxford2014Knight, RPiette, CPage, HWalters, DMarozzi, ENardini, MStringer, SJeffery, KHow the brain combines information from different sensory modalities and of differing reliability is an important and still-unanswered question. Using the head direction (HD) system as a model, we explored the resolution of conflicts between landmarks and background cues. Sensory cue integration models predict averaging of the two cues, whereas attractor models predict capture of the signal by the dominant cue. We found that a visual landmark mostly captured the HD signal at low conflicts: however, there was an increasing propensity for the cells to integrate the cues thereafter. A large conflict presented to naive rats resulted in greater visual cue capture (less integration) than in experienced rats, revealing an effect of experience. We propose that weighted cue integration in HD cells arises from dynamic plasticity of the feed-forward inputs to the network, causing within-trial spatial redistribution of the visual inputs onto the ring. This suggests that an attractor network can implement decision processes about cue reliability using simple architecture and learning rules, thus providing a potential neural substrate for weighted cue integration. |
spellingShingle | Knight, R Piette, C Page, H Walters, D Marozzi, E Nardini, M Stringer, S Jeffery, K Weighted cue integration in the rodent head direction system. |
title | Weighted cue integration in the rodent head direction system. |
title_full | Weighted cue integration in the rodent head direction system. |
title_fullStr | Weighted cue integration in the rodent head direction system. |
title_full_unstemmed | Weighted cue integration in the rodent head direction system. |
title_short | Weighted cue integration in the rodent head direction system. |
title_sort | weighted cue integration in the rodent head direction system |
work_keys_str_mv | AT knightr weightedcueintegrationintherodentheaddirectionsystem AT piettec weightedcueintegrationintherodentheaddirectionsystem AT pageh weightedcueintegrationintherodentheaddirectionsystem AT waltersd weightedcueintegrationintherodentheaddirectionsystem AT marozzie weightedcueintegrationintherodentheaddirectionsystem AT nardinim weightedcueintegrationintherodentheaddirectionsystem AT stringers weightedcueintegrationintherodentheaddirectionsystem AT jefferyk weightedcueintegrationintherodentheaddirectionsystem |