Filtered matchings and simplicial complexes

To any finite simplicial complex X, we associate a natural filtration starting from Chari and Joswig’s discrete Morse complex and abutting to the matching complex of X. This construction leads to the definition of several homology theories, which we compute in a number of examples. We also completel...

Full description

Bibliographic Details
Main Authors: Celoria, D, Yerolemou, N
Format: Journal article
Language:English
Published: Combinatorial Mathematics Society of Australasia 2022
Description
Summary:To any finite simplicial complex X, we associate a natural filtration starting from Chari and Joswig’s discrete Morse complex and abutting to the matching complex of X. This construction leads to the definition of several homology theories, which we compute in a number of examples. We also completely determine the graded object associated to this filtration in terms of the homology of simpler complexes. This last result provides some connections to the number of vertex-disjoint cycles of a graph.