Adjusting the effect of nonstationarity in cluster-based and TFCE inference.
In nonstationary images, cluster inference depends on the local image smoothness, as clusters tend to be larger in smoother regions by chance alone. In order to correct the inference for such nonstationary, cluster sizes can be adjusted according to a local smoothness estimate. In this study, adjust...
Hlavní autoři: | Salimi-Khorshidi, G, Smith, S, Nichols, T |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
2011
|
Podobné jednotky
-
Adjusting the neuroimaging statistical inferences for nonstationarity.
Autor: Salimi-Khorshidi, G, a další
Vydáno: (2009) -
Adjusting the neuroimaging statistical inferences for nonstationarity.
Autor: Salimi-Khorshidi, G, a další
Vydáno: (2009) -
Adjusting the neuroimaging statistical inferences for nonstationarity.
Autor: Salimi-Khorshidi, G, a další
Vydáno: (2009) -
Comparison of a non-stationary voxelation-corrected cluster-size test with TFCE for group-Level MRI inference
Autor: Li, H, a další
Vydáno: (2016) -
Probabilistic TFCE: A generalized combination of cluster size and voxel intensity to increase statistical power
Autor: Spisák, T, a další
Vydáno: (2018)