Comparisons of sonoluminescence from single-bubbles and cavitation fields: bridging the gap

Sonoluminescence (SL) refers to the generation of light through the energetic pulsations of acoustic cavitation bubbles in a liquid. For years, SL was observed primarily in cavitation fields. These bubbles are believed by many to undergo near-adiabatic compression, resulting in the heating of the bu...

Ausführliche Beschreibung

Bibliographische Detailangaben
Hauptverfasser: Matula, TJ, Roy, RA
Format: Journal article
Sprache:English
Veröffentlicht: Elsevier 1997
Beschreibung
Zusammenfassung:Sonoluminescence (SL) refers to the generation of light through the energetic pulsations of acoustic cavitation bubbles in a liquid. For years, SL was observed primarily in cavitation fields. These bubbles are believed by many to undergo near-adiabatic compression, resulting in the heating of the bubble contents and the subsequent emission of light. Recently, researchers have discovered a ‘new’ form of sonoluminescence in which light is observed to emanate from a single bubble undergoing very large volume excursions. The mechanism for light production is unknown, but many believe it is due to a rapid heating of the central core by an imploding shock wave. Based in part on the emission time scales, there is a common belief that the two forms of SL are quite distinct. We address this issue by comparing the two phenomena with regards to their light-flash durations and emission spectra-leading to some surprising differences and similarities.