Travelling wave phenomena in non-linear diffusion degenerate Nagumo equations

In this paper we study the existence of one-dimensional travelling wave solutions $u(x,t)=\phi(x-ct)$ for the non-linear degenerate (at u=0) reaction-diffusion equation $u_t=[D(u)u_x]_x+g(u)$ where g is a generalisation of the Nagumo equation arising in nerve conduction theory, as well as describing...

Full description

Bibliographic Details
Main Authors: Sánchez-Garduño, F, Maini, P
Format: Journal article
Published: 1997
Description
Summary:In this paper we study the existence of one-dimensional travelling wave solutions $u(x,t)=\phi(x-ct)$ for the non-linear degenerate (at u=0) reaction-diffusion equation $u_t=[D(u)u_x]_x+g(u)$ where g is a generalisation of the Nagumo equation arising in nerve conduction theory, as well as describing the Allee effect. We use a dynamical systems approach to prove: 1. the global bifurcation of a heteroclinic cycle (two monotone stationary front solutions), for c=0,2. The existence of a unique value $c^{*}>0$ of c for which $\phi(x-c^{*}t)$ is a travelling wave solution of sharp type and 3. A continuum of monotone and oscillatory fronts for $c \neq c^{*}$. We present some numerical simulations of the phase portrait in travelling wave coordinates and on the full partial differential equation.