Travelling wave phenomena in non-linear diffusion degenerate Nagumo equations

In this paper we study the existence of one-dimensional travelling wave solutions $u(x,t)=\phi(x-ct)$ for the non-linear degenerate (at u=0) reaction-diffusion equation $u_t=[D(u)u_x]_x+g(u)$ where g is a generalisation of the Nagumo equation arising in nerve conduction theory, as well as describing...

Popoln opis

Bibliografske podrobnosti
Main Authors: Sánchez-Garduño, F, Maini, P
Format: Journal article
Izdano: 1997
_version_ 1826269030531465216
author Sánchez-Garduño, F
Maini, P
author_facet Sánchez-Garduño, F
Maini, P
author_sort Sánchez-Garduño, F
collection OXFORD
description In this paper we study the existence of one-dimensional travelling wave solutions $u(x,t)=\phi(x-ct)$ for the non-linear degenerate (at u=0) reaction-diffusion equation $u_t=[D(u)u_x]_x+g(u)$ where g is a generalisation of the Nagumo equation arising in nerve conduction theory, as well as describing the Allee effect. We use a dynamical systems approach to prove: 1. the global bifurcation of a heteroclinic cycle (two monotone stationary front solutions), for c=0,2. The existence of a unique value $c^{*}>0$ of c for which $\phi(x-c^{*}t)$ is a travelling wave solution of sharp type and 3. A continuum of monotone and oscillatory fronts for $c \neq c^{*}$. We present some numerical simulations of the phase portrait in travelling wave coordinates and on the full partial differential equation.
first_indexed 2024-03-06T21:18:41Z
format Journal article
id oxford-uuid:40b39b06-774e-41a2-b9ad-a0efa7d3a88e
institution University of Oxford
last_indexed 2024-03-06T21:18:41Z
publishDate 1997
record_format dspace
spelling oxford-uuid:40b39b06-774e-41a2-b9ad-a0efa7d3a88e2022-03-26T14:39:19ZTravelling wave phenomena in non-linear diffusion degenerate Nagumo equationsJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:40b39b06-774e-41a2-b9ad-a0efa7d3a88eMathematical Institute - ePrints1997Sánchez-Garduño, FMaini, PIn this paper we study the existence of one-dimensional travelling wave solutions $u(x,t)=\phi(x-ct)$ for the non-linear degenerate (at u=0) reaction-diffusion equation $u_t=[D(u)u_x]_x+g(u)$ where g is a generalisation of the Nagumo equation arising in nerve conduction theory, as well as describing the Allee effect. We use a dynamical systems approach to prove: 1. the global bifurcation of a heteroclinic cycle (two monotone stationary front solutions), for c=0,2. The existence of a unique value $c^{*}>0$ of c for which $\phi(x-c^{*}t)$ is a travelling wave solution of sharp type and 3. A continuum of monotone and oscillatory fronts for $c \neq c^{*}$. We present some numerical simulations of the phase portrait in travelling wave coordinates and on the full partial differential equation.
spellingShingle Sánchez-Garduño, F
Maini, P
Travelling wave phenomena in non-linear diffusion degenerate Nagumo equations
title Travelling wave phenomena in non-linear diffusion degenerate Nagumo equations
title_full Travelling wave phenomena in non-linear diffusion degenerate Nagumo equations
title_fullStr Travelling wave phenomena in non-linear diffusion degenerate Nagumo equations
title_full_unstemmed Travelling wave phenomena in non-linear diffusion degenerate Nagumo equations
title_short Travelling wave phenomena in non-linear diffusion degenerate Nagumo equations
title_sort travelling wave phenomena in non linear diffusion degenerate nagumo equations
work_keys_str_mv AT sanchezgardunof travellingwavephenomenainnonlineardiffusiondegeneratenagumoequations
AT mainip travellingwavephenomenainnonlineardiffusiondegeneratenagumoequations