Travelling wave phenomena in non-linear diffusion degenerate Nagumo equations
In this paper we study the existence of one-dimensional travelling wave solutions $u(x,t)=\phi(x-ct)$ for the non-linear degenerate (at u=0) reaction-diffusion equation $u_t=[D(u)u_x]_x+g(u)$ where g is a generalisation of the Nagumo equation arising in nerve conduction theory, as well as describing...
Main Authors: | Sánchez-Garduño, F, Maini, P |
---|---|
Formato: | Journal article |
Publicado em: |
1997
|
Registos relacionados
-
Travelling wave phenomena in non-linear diffusion degenerate Nagumo equations
Por: SanchezGarduno, F, et al.
Publicado em: (1997) -
Travelling wave phenomena in some degenerate reaction-diffusion equations
Por: Sánchez-Garduño, F, et al.
Publicado em: (1994) -
Existence and uniqueness of a sharp travelling wave in degenerate non-linear diffusion Fisher-KPP equations
Por: Sánchez-Garduño, F, et al.
Publicado em: (1994) -
TRAVELING-WAVE PHENOMENA IN SOME DEGENERATE REACTION-DIFFUSION EQUATIONS
Por: Sanchezgarduno, F, et al.
Publicado em: (1995) -
A NON-LINEAR DEGENERATE EQUATION FOR DIRECT AGGREGATION AND TRAVELING WAVE DYNAMICS
Por: Sanchez-Garduno, F, et al.
Publicado em: (2010)