O-minimality and the Andre-Oort conjecture for C-n

We give an unconditional proof of the Andŕe-Oort conjecture for arbitrary products of modular curves. We establish two generalizations. The first includes the Manin-Mumford conjecture for arbitrary products of elliptic curves defined over Q̄ as well as Lang's conjecture for torsion points in po...

Mô tả đầy đủ

Chi tiết về thư mục
Tác giả chính: Pila, J
Định dạng: Journal article
Ngôn ngữ:English
Được phát hành: 2011
Miêu tả
Tóm tắt:We give an unconditional proof of the Andŕe-Oort conjecture for arbitrary products of modular curves. We establish two generalizations. The first includes the Manin-Mumford conjecture for arbitrary products of elliptic curves defined over Q̄ as well as Lang's conjecture for torsion points in powers of the multiplicative group. The second includes the Manin-Mumford conjecture for abelian varieties defined over Q̄. Our approach uses the theory of o-minimal structures, a part of Model Theory, and follows a strategy proposed by Zannier and implemented in three recent papers: a new proof of the Manin-Mumford conjecture by Pila-Zannier; a proof of a special (but new) case of Pink's relative Manin-Mumford conjecture by Masser-Zannier; and new proofs of certain known results of Andŕe-Oort-Manin-Mumford type by Pila.