Tunable fluorescein-encapsulated zeolitic imidazolate framework-8 nanoparticles for solid-state lighting

A series of fluorescein-encapsulated zeolitic imidazolate framework-8 (fluorescein@ZIF-8) luminescent nanoparticles with a scalable guest loading has been fabricated and characterized. The successful encapsulation of the organic dye (fluorescein) is supported by both experimental evidence and theore...

全面介绍

书目详细资料
Main Authors: Xiong, T, Zhang, Y, Donà, L, Gutiérrez, M, Möslein, AF, Babal, AS, Amin, N, Civalleri, B, Tan, J-C
格式: Journal article
语言:English
出版: American Chemical Society 2021
实物特征
总结:A series of fluorescein-encapsulated zeolitic imidazolate framework-8 (fluorescein@ZIF-8) luminescent nanoparticles with a scalable guest loading has been fabricated and characterized. The successful encapsulation of the organic dye (fluorescein) is supported by both experimental evidence and theoretical simulations. The measured optical band gap is found to be comparable with the computed values of a hypothetical guest–host system. Isolated monomers and aggregate species of fluorescein confined in ZIF-8 nanocrystals have been systematically investigated through fluorescence lifetime spectroscopy. The quantum yield (QY) of the obtained solid-state materials is particularly high (QY ∼ 98%), especially when the concentration of the fluorescein guest is low. Combining a blue LED chip and a thin photoactive film of fluorescein@ZIF-8, we demonstrate a device with good optical tunability for multicolor and white light emissions. Additionally, we show that the fluorescein@ZIF-8 nanoparticles exhibit an improved photostability due to the shielding effect conferred by the nanoconfinement of the host framework, making them promising candidates for practical applications such as solid-state lighting, photonics, and optical communications.