Role of the transcription factor sox4 in insulin secretion and impaired glucose tolerance.

OBJECTIVES: To identify, map, clone, and functionally validate a novel mouse model for impaired glucose tolerance and insulin secretion. RESEARCH DESIGN AND METHODS: Haploinsufficiency of the insulin receptor and associated mild insulin resistance has been used to sensitize an N-ethyl-N-nitrosourea...

Full description

Bibliographic Details
Main Authors: Goldsworthy, M, Hugill, A, Freeman, H, Horner, E, Shimomura, K, Bogani, D, Pieles, G, Mijat, V, Arkell, R, Bhattacharya, S, Ashcroft, F, Cox, R
Format: Journal article
Language:English
Published: 2008
_version_ 1797064825861308416
author Goldsworthy, M
Hugill, A
Freeman, H
Horner, E
Shimomura, K
Bogani, D
Pieles, G
Mijat, V
Arkell, R
Bhattacharya, S
Ashcroft, F
Cox, R
author_facet Goldsworthy, M
Hugill, A
Freeman, H
Horner, E
Shimomura, K
Bogani, D
Pieles, G
Mijat, V
Arkell, R
Bhattacharya, S
Ashcroft, F
Cox, R
author_sort Goldsworthy, M
collection OXFORD
description OBJECTIVES: To identify, map, clone, and functionally validate a novel mouse model for impaired glucose tolerance and insulin secretion. RESEARCH DESIGN AND METHODS: Haploinsufficiency of the insulin receptor and associated mild insulin resistance has been used to sensitize an N-ethyl-N-nitrosourea (ENU) screen to identify novel mutations resulting in impaired glucose tolerance and diabetes. The new impaired glucose tolerance 4 (IGT4) model was selected using an intraperitoneal glucose tolerance test and inheritance of the phenotype confirmed by generation of backcross progeny. Segregation of the phenotype was correlated with genotype information to map the location of the gene and candidates sequenced for mutations. The function of the SRY-related high mobility group (HMG)-box 4 (Sox4) gene in insulin secretion was tested using another ENU allele and by small interfering RNA silencing in insulinoma cells. RESULTS: We describe two allelic autosomal dominant mutations in the highly conserved HMG box of the transcription factor Sox4. Previously associated with pancreas development, Sox4 mutations in the adult mouse result in an insulin secretory defect, which exhibits impaired glucose tolerance in association with insulin receptor(+/-)-induced insulin resistance. Elimination of the Sox4 transcript in INS1 and Min6 cells resulted in the abolition of glucose-stimulated insulin release similar to that observed for silencing of the key metabolic enzyme glucokinase. Intracellular calcium measurements in treated cells indicate that this defect lies downstream of the ATP-sensitive K(+) channel (K(ATP) channel) and calcium influx. CONCLUSIONS: IGT4 represents a novel digenic model of insulin resistance coupled with an insulin secretory defect. The Sox4 gene has a role in insulin secretion in the adult beta-cell downstream of the K(ATP) channel.
first_indexed 2024-03-06T21:19:55Z
format Journal article
id oxford-uuid:411d1c88-0ec9-4b7b-99d2-2d3ac99ee816
institution University of Oxford
language English
last_indexed 2024-03-06T21:19:55Z
publishDate 2008
record_format dspace
spelling oxford-uuid:411d1c88-0ec9-4b7b-99d2-2d3ac99ee8162022-03-26T14:41:41ZRole of the transcription factor sox4 in insulin secretion and impaired glucose tolerance.Journal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:411d1c88-0ec9-4b7b-99d2-2d3ac99ee816EnglishSymplectic Elements at Oxford2008Goldsworthy, MHugill, AFreeman, HHorner, EShimomura, KBogani, DPieles, GMijat, VArkell, RBhattacharya, SAshcroft, FCox, ROBJECTIVES: To identify, map, clone, and functionally validate a novel mouse model for impaired glucose tolerance and insulin secretion. RESEARCH DESIGN AND METHODS: Haploinsufficiency of the insulin receptor and associated mild insulin resistance has been used to sensitize an N-ethyl-N-nitrosourea (ENU) screen to identify novel mutations resulting in impaired glucose tolerance and diabetes. The new impaired glucose tolerance 4 (IGT4) model was selected using an intraperitoneal glucose tolerance test and inheritance of the phenotype confirmed by generation of backcross progeny. Segregation of the phenotype was correlated with genotype information to map the location of the gene and candidates sequenced for mutations. The function of the SRY-related high mobility group (HMG)-box 4 (Sox4) gene in insulin secretion was tested using another ENU allele and by small interfering RNA silencing in insulinoma cells. RESULTS: We describe two allelic autosomal dominant mutations in the highly conserved HMG box of the transcription factor Sox4. Previously associated with pancreas development, Sox4 mutations in the adult mouse result in an insulin secretory defect, which exhibits impaired glucose tolerance in association with insulin receptor(+/-)-induced insulin resistance. Elimination of the Sox4 transcript in INS1 and Min6 cells resulted in the abolition of glucose-stimulated insulin release similar to that observed for silencing of the key metabolic enzyme glucokinase. Intracellular calcium measurements in treated cells indicate that this defect lies downstream of the ATP-sensitive K(+) channel (K(ATP) channel) and calcium influx. CONCLUSIONS: IGT4 represents a novel digenic model of insulin resistance coupled with an insulin secretory defect. The Sox4 gene has a role in insulin secretion in the adult beta-cell downstream of the K(ATP) channel.
spellingShingle Goldsworthy, M
Hugill, A
Freeman, H
Horner, E
Shimomura, K
Bogani, D
Pieles, G
Mijat, V
Arkell, R
Bhattacharya, S
Ashcroft, F
Cox, R
Role of the transcription factor sox4 in insulin secretion and impaired glucose tolerance.
title Role of the transcription factor sox4 in insulin secretion and impaired glucose tolerance.
title_full Role of the transcription factor sox4 in insulin secretion and impaired glucose tolerance.
title_fullStr Role of the transcription factor sox4 in insulin secretion and impaired glucose tolerance.
title_full_unstemmed Role of the transcription factor sox4 in insulin secretion and impaired glucose tolerance.
title_short Role of the transcription factor sox4 in insulin secretion and impaired glucose tolerance.
title_sort role of the transcription factor sox4 in insulin secretion and impaired glucose tolerance
work_keys_str_mv AT goldsworthym roleofthetranscriptionfactorsox4ininsulinsecretionandimpairedglucosetolerance
AT hugilla roleofthetranscriptionfactorsox4ininsulinsecretionandimpairedglucosetolerance
AT freemanh roleofthetranscriptionfactorsox4ininsulinsecretionandimpairedglucosetolerance
AT hornere roleofthetranscriptionfactorsox4ininsulinsecretionandimpairedglucosetolerance
AT shimomurak roleofthetranscriptionfactorsox4ininsulinsecretionandimpairedglucosetolerance
AT boganid roleofthetranscriptionfactorsox4ininsulinsecretionandimpairedglucosetolerance
AT pielesg roleofthetranscriptionfactorsox4ininsulinsecretionandimpairedglucosetolerance
AT mijatv roleofthetranscriptionfactorsox4ininsulinsecretionandimpairedglucosetolerance
AT arkellr roleofthetranscriptionfactorsox4ininsulinsecretionandimpairedglucosetolerance
AT bhattacharyas roleofthetranscriptionfactorsox4ininsulinsecretionandimpairedglucosetolerance
AT ashcroftf roleofthetranscriptionfactorsox4ininsulinsecretionandimpairedglucosetolerance
AT coxr roleofthetranscriptionfactorsox4ininsulinsecretionandimpairedglucosetolerance