FedHarmony: unlearning scanner bias with distributed data
The ability to combine data across scanners and studies is vital for neuroimaging, to increase both statistical power and the representation of biological variability. However, combining datasets across sites leads to two challenges: first, an increase in undesirable non-biological variance due to s...
Hoofdauteurs: | Dinsdale, N, Jenkinson, M, Namburete, A |
---|---|
Formaat: | Conference item |
Taal: | English |
Gepubliceerd in: |
Springer
2022
|
Gelijkaardige items
-
Unlearning scanner bias for MRI harmonisation
door: Dinsdale, NK, et al.
Gepubliceerd in: (2020) -
Unlearning scanner bias for MRI harmonisation in medical image segmentation
door: Dinsdale, NK, et al.
Gepubliceerd in: (2020) -
Deep learning-based unlearning of dataset bias for MRI harmonisation and confound removal.
door: Dinsdale, NK, et al.
Gepubliceerd in: (2020) -
Deep learning-based unlearning of dataset bias for MRI harmonisation and confound removal
door: Nicola K. Dinsdale, et al.
Gepubliceerd in: (2021-03-01) -
SFHarmony: source free domain adaptation for distributed neuroimaging analysis
door: Dinsdale, NK, et al.
Gepubliceerd in: (2024)