FedHarmony: unlearning scanner bias with distributed data

The ability to combine data across scanners and studies is vital for neuroimaging, to increase both statistical power and the representation of biological variability. However, combining datasets across sites leads to two challenges: first, an increase in undesirable non-biological variance due to s...

Volledige beschrijving

Bibliografische gegevens
Hoofdauteurs: Dinsdale, N, Jenkinson, M, Namburete, A
Formaat: Conference item
Taal:English
Gepubliceerd in: Springer 2022

Gelijkaardige items