FedHarmony: unlearning scanner bias with distributed data
The ability to combine data across scanners and studies is vital for neuroimaging, to increase both statistical power and the representation of biological variability. However, combining datasets across sites leads to two challenges: first, an increase in undesirable non-biological variance due to s...
المؤلفون الرئيسيون: | Dinsdale, N, Jenkinson, M, Namburete, A |
---|---|
التنسيق: | Conference item |
اللغة: | English |
منشور في: |
Springer
2022
|
مواد مشابهة
-
Unlearning scanner bias for MRI harmonisation
حسب: Dinsdale, NK, وآخرون
منشور في: (2020) -
Unlearning scanner bias for MRI harmonisation in medical image segmentation
حسب: Dinsdale, NK, وآخرون
منشور في: (2020) -
Deep learning-based unlearning of dataset bias for MRI harmonisation and confound removal.
حسب: Dinsdale, NK, وآخرون
منشور في: (2020) -
Deep learning-based unlearning of dataset bias for MRI harmonisation and confound removal
حسب: Nicola K. Dinsdale, وآخرون
منشور في: (2021-03-01) -
SFHarmony: source free domain adaptation for distributed neuroimaging analysis
حسب: Dinsdale, NK, وآخرون
منشور في: (2024)