FedHarmony: unlearning scanner bias with distributed data
The ability to combine data across scanners and studies is vital for neuroimaging, to increase both statistical power and the representation of biological variability. However, combining datasets across sites leads to two challenges: first, an increase in undesirable non-biological variance due to s...
Κύριοι συγγραφείς: | Dinsdale, N, Jenkinson, M, Namburete, A |
---|---|
Μορφή: | Conference item |
Γλώσσα: | English |
Έκδοση: |
Springer
2022
|
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
Unlearning scanner bias for MRI harmonisation
ανά: Dinsdale, NK, κ.ά.
Έκδοση: (2020) -
Unlearning scanner bias for MRI harmonisation in medical image segmentation
ανά: Dinsdale, NK, κ.ά.
Έκδοση: (2020) -
Deep learning-based unlearning of dataset bias for MRI harmonisation and confound removal.
ανά: Dinsdale, NK, κ.ά.
Έκδοση: (2020) -
Deep learning-based unlearning of dataset bias for MRI harmonisation and confound removal
ανά: Nicola K. Dinsdale, κ.ά.
Έκδοση: (2021-03-01) -
SFHarmony: source free domain adaptation for distributed neuroimaging analysis
ανά: Dinsdale, NK, κ.ά.
Έκδοση: (2024)