FedHarmony: unlearning scanner bias with distributed data
The ability to combine data across scanners and studies is vital for neuroimaging, to increase both statistical power and the representation of biological variability. However, combining datasets across sites leads to two challenges: first, an increase in undesirable non-biological variance due to s...
Auteurs principaux: | Dinsdale, N, Jenkinson, M, Namburete, A |
---|---|
Format: | Conference item |
Langue: | English |
Publié: |
Springer
2022
|
Documents similaires
-
Unlearning scanner bias for MRI harmonisation
par: Dinsdale, NK, et autres
Publié: (2020) -
Unlearning scanner bias for MRI harmonisation in medical image segmentation
par: Dinsdale, NK, et autres
Publié: (2020) -
Deep learning-based unlearning of dataset bias for MRI harmonisation and confound removal.
par: Dinsdale, NK, et autres
Publié: (2020) -
Deep learning-based unlearning of dataset bias for MRI harmonisation and confound removal
par: Nicola K. Dinsdale, et autres
Publié: (2021-03-01) -
SFHarmony: source free domain adaptation for distributed neuroimaging analysis
par: Dinsdale, NK, et autres
Publié: (2024)