FedHarmony: unlearning scanner bias with distributed data
The ability to combine data across scanners and studies is vital for neuroimaging, to increase both statistical power and the representation of biological variability. However, combining datasets across sites leads to two challenges: first, an increase in undesirable non-biological variance due to s...
Main Authors: | Dinsdale, N, Jenkinson, M, Namburete, A |
---|---|
פורמט: | Conference item |
שפה: | English |
יצא לאור: |
Springer
2022
|
פריטים דומים
-
Unlearning scanner bias for MRI harmonisation
מאת: Dinsdale, NK, et al.
יצא לאור: (2020) -
Unlearning scanner bias for MRI harmonisation in medical image segmentation
מאת: Dinsdale, NK, et al.
יצא לאור: (2020) -
Deep learning-based unlearning of dataset bias for MRI harmonisation and confound removal.
מאת: Dinsdale, NK, et al.
יצא לאור: (2020) -
Deep learning-based unlearning of dataset bias for MRI harmonisation and confound removal
מאת: Nicola K. Dinsdale, et al.
יצא לאור: (2021-03-01) -
SFHarmony: source free domain adaptation for distributed neuroimaging analysis
מאת: Dinsdale, NK, et al.
יצא לאור: (2024)