FedHarmony: unlearning scanner bias with distributed data

The ability to combine data across scanners and studies is vital for neuroimaging, to increase both statistical power and the representation of biological variability. However, combining datasets across sites leads to two challenges: first, an increase in undesirable non-biological variance due to s...

Mô tả đầy đủ

Chi tiết về thư mục
Những tác giả chính: Dinsdale, N, Jenkinson, M, Namburete, A
Định dạng: Conference item
Ngôn ngữ:English
Được phát hành: Springer 2022

Những quyển sách tương tự