FedHarmony: unlearning scanner bias with distributed data
The ability to combine data across scanners and studies is vital for neuroimaging, to increase both statistical power and the representation of biological variability. However, combining datasets across sites leads to two challenges: first, an increase in undesirable non-biological variance due to s...
Những tác giả chính: | Dinsdale, N, Jenkinson, M, Namburete, A |
---|---|
Định dạng: | Conference item |
Ngôn ngữ: | English |
Được phát hành: |
Springer
2022
|
Những quyển sách tương tự
-
Unlearning scanner bias for MRI harmonisation
Bằng: Dinsdale, NK, et al.
Được phát hành: (2020) -
Unlearning scanner bias for MRI harmonisation in medical image segmentation
Bằng: Dinsdale, NK, et al.
Được phát hành: (2020) -
Deep learning-based unlearning of dataset bias for MRI harmonisation and confound removal.
Bằng: Dinsdale, NK, et al.
Được phát hành: (2020) -
Deep learning-based unlearning of dataset bias for MRI harmonisation and confound removal
Bằng: Nicola K. Dinsdale, et al.
Được phát hành: (2021-03-01) -
SFHarmony: source free domain adaptation for distributed neuroimaging analysis
Bằng: Dinsdale, NK, et al.
Được phát hành: (2024)