Efficient dynamical simulation of strongly correlated one-dimensional quantum systems
Studying the unitary time evolution of strongly correlated quantum systems is one of the most challenging theoretical and experimental problems in physics. For an important class of one-dimensional (11)) systems dynamical simulations have become possible since the advent of the time-evolving block d...
Main Authors: | , |
---|---|
Format: | Conference item |
Published: |
2006
|
Summary: | Studying the unitary time evolution of strongly correlated quantum systems is one of the most challenging theoretical and experimental problems in physics. For an important class of one-dimensional (11)) systems dynamical simulations have become possible since the advent of the time-evolving block decimation (TEBD) algorithm. We study the computational properties of TEBD using the Bose-Hubbard model (BHM) as a test-bed. We demonstrate its efficiency and verify its accuracy through comparisons with an exactly solvable small system and via the convergence of one- and two-particle observables in a larger system. |
---|