Similarities and differences between human and murine TNF promoters in their response to lipopolysaccharide.

Transcription of the TNF gene is rapidly and transiently induced by LPS in cells of monocyte/macrophage lineage. Previous data suggested that multiple NF-kappaB/Rel binding sites play a role in the transcriptional response to LPS of the murine gene. However, the relevance of homologous sites in the...

Full description

Bibliographic Details
Main Authors: Kuprash, D, Udalova, I, Turetskaya, R, Kwiatkowski, D, Rice, N, Nedospasov, SA
Format: Journal article
Language:English
Published: 1999
_version_ 1797064966116737024
author Kuprash, D
Udalova, I
Turetskaya, R
Kwiatkowski, D
Rice, N
Nedospasov, SA
author_facet Kuprash, D
Udalova, I
Turetskaya, R
Kwiatkowski, D
Rice, N
Nedospasov, SA
author_sort Kuprash, D
collection OXFORD
description Transcription of the TNF gene is rapidly and transiently induced by LPS in cells of monocyte/macrophage lineage. Previous data suggested that multiple NF-kappaB/Rel binding sites play a role in the transcriptional response to LPS of the murine gene. However, the relevance of homologous sites in the human TNF gene remained a matter of controversy, partly because the high affinity NF-kappaB/Rel site located at -510 in the murine promoter is not conserved in humans. Here we used two sets of similarly designed human and mouse TNF promoter deletion constructs and overexpression of IkappaB in the murine macrophage cell line ANA-1 to show remarkable similarity in the pattern of the transcriptional response to LPS, further demonstrating the functional role of the distal promoter region located between -600 and -650. This region was characterized by mutagenesis of protein binding sites, including two relatively low affinity NF-kappaB/Rel sites, #2 and 2a. Mutation in each of the NF-kappaB sites resulted in 2- to 3-fold lower transcriptional activity in response to LPS. In contrast to LPS activation, the response to PMA was substantially lower in magnitude and required only the proximal promoter region. In summary, the functional topography of human and murine promoters when assayed in the same system has some marked similarities. Our observations support the notion that full LPS response of TNF gene requires both NF-kappaB and non-NF-kappaB nuclear proteins. Our data also suggest that the functional activity of a given kappaB site depends on the entire DNA sequence context in the promoter region.
first_indexed 2024-03-06T21:21:52Z
format Journal article
id oxford-uuid:41b6e551-ef68-40b4-a22c-770f5037b69e
institution University of Oxford
language English
last_indexed 2024-03-06T21:21:52Z
publishDate 1999
record_format dspace
spelling oxford-uuid:41b6e551-ef68-40b4-a22c-770f5037b69e2022-03-26T14:45:21ZSimilarities and differences between human and murine TNF promoters in their response to lipopolysaccharide.Journal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:41b6e551-ef68-40b4-a22c-770f5037b69eEnglishSymplectic Elements at Oxford1999Kuprash, DUdalova, ITuretskaya, RKwiatkowski, DRice, NNedospasov, SATranscription of the TNF gene is rapidly and transiently induced by LPS in cells of monocyte/macrophage lineage. Previous data suggested that multiple NF-kappaB/Rel binding sites play a role in the transcriptional response to LPS of the murine gene. However, the relevance of homologous sites in the human TNF gene remained a matter of controversy, partly because the high affinity NF-kappaB/Rel site located at -510 in the murine promoter is not conserved in humans. Here we used two sets of similarly designed human and mouse TNF promoter deletion constructs and overexpression of IkappaB in the murine macrophage cell line ANA-1 to show remarkable similarity in the pattern of the transcriptional response to LPS, further demonstrating the functional role of the distal promoter region located between -600 and -650. This region was characterized by mutagenesis of protein binding sites, including two relatively low affinity NF-kappaB/Rel sites, #2 and 2a. Mutation in each of the NF-kappaB sites resulted in 2- to 3-fold lower transcriptional activity in response to LPS. In contrast to LPS activation, the response to PMA was substantially lower in magnitude and required only the proximal promoter region. In summary, the functional topography of human and murine promoters when assayed in the same system has some marked similarities. Our observations support the notion that full LPS response of TNF gene requires both NF-kappaB and non-NF-kappaB nuclear proteins. Our data also suggest that the functional activity of a given kappaB site depends on the entire DNA sequence context in the promoter region.
spellingShingle Kuprash, D
Udalova, I
Turetskaya, R
Kwiatkowski, D
Rice, N
Nedospasov, SA
Similarities and differences between human and murine TNF promoters in their response to lipopolysaccharide.
title Similarities and differences between human and murine TNF promoters in their response to lipopolysaccharide.
title_full Similarities and differences between human and murine TNF promoters in their response to lipopolysaccharide.
title_fullStr Similarities and differences between human and murine TNF promoters in their response to lipopolysaccharide.
title_full_unstemmed Similarities and differences between human and murine TNF promoters in their response to lipopolysaccharide.
title_short Similarities and differences between human and murine TNF promoters in their response to lipopolysaccharide.
title_sort similarities and differences between human and murine tnf promoters in their response to lipopolysaccharide
work_keys_str_mv AT kuprashd similaritiesanddifferencesbetweenhumanandmurinetnfpromotersintheirresponsetolipopolysaccharide
AT udalovai similaritiesanddifferencesbetweenhumanandmurinetnfpromotersintheirresponsetolipopolysaccharide
AT turetskayar similaritiesanddifferencesbetweenhumanandmurinetnfpromotersintheirresponsetolipopolysaccharide
AT kwiatkowskid similaritiesanddifferencesbetweenhumanandmurinetnfpromotersintheirresponsetolipopolysaccharide
AT ricen similaritiesanddifferencesbetweenhumanandmurinetnfpromotersintheirresponsetolipopolysaccharide
AT nedospasovsa similaritiesanddifferencesbetweenhumanandmurinetnfpromotersintheirresponsetolipopolysaccharide