A theory of quantum subspace diagonalization
Quantum subspace diagonalization methods are an exciting new class of algorithms for solving large-scale eigenvalue problems using quantum computers. Unfortunately, these methods require the solution of an ill-conditioned generalized eigenvalue problem, with a matrix pencil corrupted by a nonnegligi...
Main Authors: | Epperly, EN, Lin, L, Nakatsukasa, Y |
---|---|
格式: | Journal article |
语言: | English |
出版: |
Society for Industrial and Applied Mathematics
2022
|
相似书籍
-
Sampling Error Analysis in Quantum Krylov Subspace Diagonalization
由: Gwonhak Lee, et al.
出版: (2024-09-01) -
Active Block Diagonal Subspace Clustering
由: Ziqi Xie, et al.
出版: (2021-01-01) -
Subspace Clustering with Block Diagonal Sparse Representation
由: Fang, Xian, et al.
出版: (2021) -
Deep Subspace Clustering with Block Diagonal Constraint
由: Jing Liu, et al.
出版: (2020-12-01) -
On the structure of the fundamental subspaces of acyclic matrices with 0 in the diagonal
由: Daniel Jaume, et al.
出版: (2023-08-01)