Quasirandom Cayley graphs
We prove that the properties of having small discrepancy and having small second eigenvalue are equivalent in Cayley graphs, extending a result of Kohayakawa, R¨odl, and Schacht, who treated the abelian case. The proof relies on Grothendieck’s inequality. As a corollary, we also prove that a similar...
Principais autores: | , |
---|---|
Formato: | Journal article |
Publicado em: |
Discrete Analysis
2017
|
Resumo: | We prove that the properties of having small discrepancy and having small second eigenvalue are equivalent in Cayley graphs, extending a result of Kohayakawa, R¨odl, and Schacht, who treated the abelian case. The proof relies on Grothendieck’s inequality. As a corollary, we also prove that a similar result holds in all vertex-transitive graphs. |
---|