Brain damage and global stereopsis.

When a single object lies in front of or beyond the plane of fixation its retinal image lies on disparate positions in the two eyes. This 'local' retinal disparity is an excellent cue to depth, and retinal disparties of a few seconds of arc are detectable by people and monkeys. However, mo...

Full description

Bibliographic Details
Main Authors: Cowey, A, Porter, J
Format: Journal article
Language:English
Published: 1979
_version_ 1797065157399019520
author Cowey, A
Porter, J
author_facet Cowey, A
Porter, J
author_sort Cowey, A
collection OXFORD
description When a single object lies in front of or beyond the plane of fixation its retinal image lies on disparate positions in the two eyes. This 'local' retinal disparity is an excellent cue to depth, and retinal disparties of a few seconds of arc are detectable by people and monkeys. However, most visual scenes produce a complex array of contours in each eye and we can detect the disparity in the arrays despite the ambiguous nature of the disparities, i.e. each contour in one eye could be related to any of several similar contours in the other eye. This ability, known as 'global' stereopsis, may be selectively impaired following brain damage in man. Global stereopsis was measured in rhesus monkeys before and after removing a different cortical visual area in different groups of animals. Only removal of the inferotemporal cortex impaired global stereopsis. The result is related to the findings with human patients and to receptive field properties of neurons in the inferotemporal cortex of monkeys.
first_indexed 2024-03-06T21:24:38Z
format Journal article
id oxford-uuid:42a932dd-f4b5-4996-be8b-e1e1d1ccf341
institution University of Oxford
language English
last_indexed 2024-03-06T21:24:38Z
publishDate 1979
record_format dspace
spelling oxford-uuid:42a932dd-f4b5-4996-be8b-e1e1d1ccf3412022-03-26T14:50:51ZBrain damage and global stereopsis.Journal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:42a932dd-f4b5-4996-be8b-e1e1d1ccf341EnglishSymplectic Elements at Oxford1979Cowey, APorter, JWhen a single object lies in front of or beyond the plane of fixation its retinal image lies on disparate positions in the two eyes. This 'local' retinal disparity is an excellent cue to depth, and retinal disparties of a few seconds of arc are detectable by people and monkeys. However, most visual scenes produce a complex array of contours in each eye and we can detect the disparity in the arrays despite the ambiguous nature of the disparities, i.e. each contour in one eye could be related to any of several similar contours in the other eye. This ability, known as 'global' stereopsis, may be selectively impaired following brain damage in man. Global stereopsis was measured in rhesus monkeys before and after removing a different cortical visual area in different groups of animals. Only removal of the inferotemporal cortex impaired global stereopsis. The result is related to the findings with human patients and to receptive field properties of neurons in the inferotemporal cortex of monkeys.
spellingShingle Cowey, A
Porter, J
Brain damage and global stereopsis.
title Brain damage and global stereopsis.
title_full Brain damage and global stereopsis.
title_fullStr Brain damage and global stereopsis.
title_full_unstemmed Brain damage and global stereopsis.
title_short Brain damage and global stereopsis.
title_sort brain damage and global stereopsis
work_keys_str_mv AT coweya braindamageandglobalstereopsis
AT porterj braindamageandglobalstereopsis